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ABSTRACT

Recent years have seen booming development of realtime

streaming services, highly improving user experience in re-

mote work, online education, and entertainment. Unlike

video-on-demand (VoD) or live services, realtime streaming

service has extremely stringent delay requirements, rendering

the TCP-based transmission no longer applicable. Existing

works based on UDP (or its variants) either suffer from the

packet loss problem or only focus on improving several QoS

metrics, which cannot achieve satisfactory user QoE.

Our insight is to slightly sacrifice the bitrate and video

quality to trade for the most significant delay to maximize the

overall QoE. We propose Oppugno‡, an integrated frame-

work that achieves joint loss adaptation and bitrate adap-

tion towards maximized QoE in realtime streaming services.

Oppugno leverages existing UDP mechanisms and employs

an advanced deep reinforcement learning algorithm Proximal

Policy Optimization (PPO), to adaptively select optimal ac-

tions based on network conditions. Trace-driven experiments

demonstrate the superiority of our framework, which outper-

forms the SOTA work by 3.9% ∼ 11.6%.

Index Terms— Realtime video streaming, ABR Algo-

rithm, quality of experience, reinforcement learning.

*Fangxin Wang is the corresponding author.
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‡Oppugno is a spell in Harry Potter that makes magical creatures attack

the caster. It is a metaphor that we use an additional mechanism to mitigate

the influence of packet loss.
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1. INTRODUCTION

The explosive development of Internet infrastructure empow-

ered the rapid switch of multimedia applications from VoD

services like Youtube to live broadcast services like Twitch.tv,

providing the one-to-all realtime streaming experience. In

recent years, the continuous spreading of the Covid-19 pan-

demic further stimulated the urgent demand for such realtime

video conference applications as Zoom or even the immer-

sive VR/AR-based chatting services [1] in Metaverse, call-

ing for all-to-all realtime streaming services. As reported by

Cisco [2], the realtime multimedia traffic on the Internet will

be tripled from 2020 to 2022 and will account for 17% of the

total Internet video traffic.

Unlike VoD or live services, realtime streaming service

has extremely stringent requirements for the streaming delay,

usually less than 150 ms [3], making the underlying TCP-

based transmission protocol no longer applicable. Such ser-

vice instead adopts the lightweight UDP-based transmission

protocol, which may suffer from the packet loss problem if

not handled properly, leading to video distortion and further

undermining the quality of experience (QoE). Some existing

approaches [4] mainly focus on bitrate adaptation for VoD

services, while they all target TCP-based lossless scenarios

and are insufficient to deal with UDP-based applications with

loss. Other approaches try to optimize UDP transmission

from codec, multi-path transmission [5], or fast retransmis-

sion, while they only focus on improving simple quality of

service(QoS) metrics and usually cannot achieve the overall

QoE optimization.

As the overall QoE of realtime streaming service consists

of different components such as delay, video quality, and bi-

trate, in this paper, we argue that the video quality and bitrate
can be slightly sacrificed to trade for the most significant de-
lay, such that the overall QoE can be maximized. Our insight

is two-fold. On the one hand, packets with bit error or packet

loss can be tolerated at the expense of video quality to avoid

retransmission delay and further improve QoE. On the other
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Fig. 1: The visual effect when experiencing different loss rate

Fig. 2: Relation between band-

width and latency

hand, extra bandwidth can be leveraged for redundant coding

such that loss can be corrected without retransmission.

To achieve this goal, we propose Oppugno, a coupled

framework compatible with existing loss control mechanisms

that achieves joint loss and bitrate adaptation toward maxi-

mized QoE in realtime streaming. We first highlight the lim-

itations of existing works and point out the opportunity space

therein to optimize the QoE in realtime streaming scenes.

Then we re-define the QoE and investigate the critical impact

factors that affect user QoE. Oppugno focuses on utilizing the

existing UDP loss control mechanisms, including FEC [6],

UDP-Lite [7], and adaptive bitrate (ABR) control, which is

compatible with existing realtime streaming architectures.

We design a holistic deep reinforcement learning (DRL)

based approach that well captures the correlations among

these mechanisms and environment dynamics for joint loss

and bitrate adaptation. We leverage Proximal Policy Opti-

mization (PPO) algorithm to train an intelligent agent based

on past network conditions and adaptively select the best ac-

tion. We conduct extensive trace-driven experiments, and the

evaluation confirms Oppugno’s superiority, with a 3.9% ∼
11.6% improvement compared with state-of-the-art solutions.

2. MOTIVATION

2.1. Limitations of Existing Works

Compared with VoD services, realtime streaming services

have more stringent latency requirement, higher bandwidth

requirement, and more diversified QoE compositions. There-

fore, it is more difficult to guarantee the user’s QoE in high-

QoE-oriented realtime streaming services in current stage.

Specifically, existing works still have their limitations in the

following aspects:

(1) TCP protocol is unsuitable for realtime streaming
scenarios, while UDP-based streaming will bring
packet loss problems. In TCP-based transmission,

clients receive data packets correctly and orderly

through mechanisms such as timeout retransmission

and congestion control, while these mechanisms make

TCP fail to meet the low-latency requirement in real-

time scenes. Thus, UDP (or those protocols built upon

it) stands out as a promising alternative, meeting the

low-latency requirement due to its light-weight design

without handling packet loss and retransmission. The

consequence however lies in the impact of the caused

loss on user QoE, leading to video distortion or even

frame lost, as shown in Figure 1.

(2) Previous ABR algorithms cannot solve the QoE de-
crease caused by loss. ABR algorithms are widely

employed in video streaming to dynamically adapt to

the bitrate of video transmission according to network

throughput, thus optimizing video quality. Recently,

there have been many works dedicated to improving

ABR with learning based methods, e.g., QARC [8],

Pensieve [4], and so on. However, such algorithms all

consider reliable transmission based on TCP and are in-

capable of dealing with loss in unreliable UDP-based

scenarios, not to mention optimize the overall QoE.

More seriously, only using such ABR algorithms can-

not distinguish errors caused by insufficient bandwidth

or network transmission. As a result, in a poor-quality

channel with much loss, the sender will keep reducing

the bitrate erroneously, leading to QoE drop.

(3) Emerging advanced transport protocols also cannot
solve the problem of QoE adaption well. Recently

there emerges some new transport protocols towards re-

altime communication scenarios, e.g., QUIC [9] built

on UDP leverages packet recovery, forward error cor-

rection, and multipath transmission to achieve low-

latency requirement. Such protocols however are par-

ticularly designed to guarantee QoS rather than QoE,

which is insufficient to simultaneously cover the im-

portant metrics in user QoE, including loss, bitrate and

delay. Besides, deploying new transmission protocols

across Internet infrastructure and devices requires quite

a long time and huge overhead.

2.2. Opportunity and Insight

Given the above limitations, we are motivated to re-examine

the QoE optimization problem in realtime streaming, explor-

ing the relationship among those important metrics affecting

QoE. We have conducted extensive measurements and have

some key observations.

We first discuss the relationship between video quality

and the streaming delay. Figure 1 describes the perceived

video quality under different loss rates. Comparing Figure

1a with Figure 1b and Figure 1c, we can find that though a

relatively high loss rate (e.g., 1%) will bring significant video
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Fig. 3: The Oppugno Framework

quality degradation, people can hardly feel the quality degra-

dation when the loss rate is quite low (e.g., 0.2%). Neverthe-

less, from the perspective of delay, accepting the 0.2% loss

rate without retransmission of the erroneous packet can save

an average of 50ms, which can even improve the overall QoE.

We then examine the relationship between the occupied

bandwidth (determining the bitrate) and the streaming delay.

We find that extra bandwidth can be leveraged for redundant

coding and further correct the packet loss, reducing stream-

ing delay by avoiding retransmission. As illustrated in Figure

2, when the transmission link has a 0.5% loss rate, an extra

160Kbps bandwidth is enough to mitigate the impact of loss.

With such observations above, we argue that different

QoE metrics are highly correlated with each other, and the

opportunity rises in comprehensively fine-tuning them to op-

timized user QoE in realtime streaming scenarios. Captur-

ing the complicated correlations therein however is challeng-

ing, especially considering the uncertain environments such

as future bandwidth and loss conditions. Thus, we are mo-

tivated to design a joint leaning-based loss and bitrate adap-

tation scheme, which can well leverage the historical experi-

ence to achieve an end-to-end adaptation.

3. DESIGN

In this section, we describe the design of Oppugno, a frame-

work that generates a DRL-based algorithm approach to inte-

grate the loss adaption and bitrate adaption for realtime video

streaming services jointly. We start by explaining the design

of QoE for realtime streaming. We then explain the frame-

work design of Oppugno, and illustrate the DRL algorithm

underlying Oppugno and its application to our framework.

3.1. QoE for Realtime Streaming

We followed the QoE derived from existing works [10, 4, 11]
as

QoE =
N∑
i=1

q(Rn, Ln, Dn)− α
N∑
i=1

Tn

− β

N−1∑
i=1

|q(Rn+1, Ln+1, Dn+1)− q(Rn, Ln, Dn)|
(1)

where N is the total timeslots, Rn indicates the bitrate of

timeslot n, Ln is the packets loss ratios*, and Dn is the dis-

carded packets due to timeout. Therefore, q(Rn, Ln, Dn)
maps the bitrate, packet loss, and overdue packet discard to

the video quality perceived by end-users. Tn represents the

delay between sender and users. It is worth noting that ex-

cessive delays are not acceptable in our cases. The final term

penalizes changes in video quality to favor smoothness. α
and β are correlated coefficients to balance the relationships

among terms. In our evaluation, we report the average QoE

every timeslot to more accurately describe the user experience

at each moment.

3.2. The Oppugno Framework

The framework of Oppugno is demonstrated in Figure 3,

which mainly consists of a sender, a receiver and two channels

for video streaming and information feedback. The sender

encodes the raw video, and transmits the video packets to the

receiver through the video streaming channel. The receiver

decodes the received video packets and repairs the packet loss

through the FEC data. Based on the user’s QoE and the net-

work status analysis in the previous period (including band-

width and packet loss rate), Oppugno adaptively adjusts the

bitrate and loss control and informs the sender accordingly.

3.2.1. Receiver-driven Control

The whole adaptation is driven by the receiver since the

client’s network status and video quality can be obtained in

time to ensure fast response. Oppugno consists of a network

analyzer for network status collection, a video analyzer for

video quality calculation, a RL scheduler for control policy

making, and an adaptive executor to execute the packet send-

ing. As the core part of the Oppugno, the scheduler employs

a deep reinforcement learning based scheme. Past data col-

lected from the network analyzer and video analyzer is used

to train the scheduler towards an adaptive RL agent for opti-

mized bitrate and loss control. After the training, the sched-

uler is used to make control decisions, which are later ap-

plied to the adaptive executor at the sender for execution. It is

*There can be different reasons for packet loss, such as bit errors or con-

gestion. We do not distinguish the specific loss reasons in our work.
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worth noting that the RL-based scheduler can employ an on-

line learning model that updates the model in realtime to suit

the environment changes rapidly.

3.2.2. Leveraging Existing UDP Mechanisms

To be compatible with current realtime streaming architec-

tures, we employ the existing UDP control mechanisms for

joint loss and bitrate adaptation. In particular, we utilize For-

ward Error Correction (FEC) and UDP-Lite in our prototype

implementation. FEC [6] is a kind of streaming codec mech-

anism that uses redundant packets to allow the decoder to re-

cover lost packets without explicit retransmission. Accord-

ing to the current network bandwidth, we can effectively re-

duce the retransmission delay by selecting different FEC lev-

els (i.e., deciding different redundant encoding levels) at the

expense of corresponding bandwidth overhead. UDP-Lite [7]

is a variant of the original UDP that allows the packet to

be partially checked with a specified percentage. With this

mechanism, the receiver can tolerate partial packet error, al-

lowing a certain degree of error to be accepted.

3.3. Algorithm Design

3.3.1. Basic Training Algorithm

In Oppugno, we use Proximal Policy Optimization [12], a

state-of-the-art actor-critic reinforcement learning algorithm.

Specifically, the agent samples an action based on the current

environment state and the probability distribution given by the

policy πθ (St, at). After executing each action, the simulated

environment will give us corresponding feedback, which will

be used as observations of the environment for the agent to

make the next decision. The traditional actor-critic is a policy

gradient method, and the principle is as follows:

∇θEπθ
= Êt

[
∇θ logπθ

(at | st) Ât

]
(2)

This formula uses πθ to represent policy and all its parame-

ters. Ât is the advantage function, representing the difference

between action at and the average value of all actions. The

idea is to use the policy’s trajectory to estimate the gradient

of the expected total reward, while the advantage does not re-

quire all interactions with the environment and could update

the policy at any time.
However, the learning rate of this traditional policy gradi-

ent method is challenging to control. Learning will be slow
and potentially fall to a local optimum if the learning rate is
too low. Meanwhile, if the learning rate is too high, it will
cause more significant fluctuations, and it will not be easy to
converge. Therefore, we used a better-performing method -
PPO. The essential formula of PPO is:

Lclip (θ) =

⎧⎪⎨
⎪⎩

(1− ε)At, rt (θ) ≤ 1− ε and At < 0,

(1 + ε)At, rt (θ) ≥ 1 + ε and At > 0,

rt (θ)At, otherwise.

(3)

rt (θ) is defined as follows:

rt (θ) =
πθ (at | st)
πθold (at | st)

(4)

As the equation shows, PPO compares the new policy with

the old policy and uses this coefficient rt (θ) to limit the up-

date range. With this improvement, PPO is more stable, re-

liable, and has better overall performance. Furthermore, the

implementation of PPO has the same level of complexity as

the original actor-critic method. We present more details in

Algorithm 1.

Algorithm 1 The Proximal Policy Optimization Algorithm,

Actor-Critic Style

Input: Initial policy πθold

1: for iteration=1,2,... do
2: for actor=1,2,...,N do
3: Run policy πθold in environment, and collect set

of partial trajectories

4: Estimate the advantages Â1,..., ÂT

5: end for
6: Optimize surrogate Lt (θ), with K epochs and mini-

batch size M ≤ NT
7: θold ← θ
8: end for

3.3.2. Observation and Action Space

Oppugno’s observation space contains the measured values

of last time slot, including delay, sent packets, packet loss

and video size. Intuitively, the increase or decrease of any

variable in the action space has a fixed impact on the quality.

Therefore, we also try to feed different scores or penalties

to the PPO algorithm, including video quality score, delay

penalty, discard penalty, and smoothness penalty. With the

guidance of these values, Oppugno indeed performs better.

Our decision space contains three independent variables:

bitrate, FEC ratio, and UDP-Lite ratio. The number of com-

binations between them is enormous. However, this makes
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Fig. 5: QoE under FCC dataset

the probability of each action taken by the policy is tiny and

ultimately cause it difficult for the RL algorithm to learn a

good policy. To mitigate this problem, we did the follow-

ing thinking: choosing a combination among three different

parameters is actually finding a point in a three-dimensional

space. If we turn this process into continuous walking in this

three-dimensional space, we only need to define actions as

different travel directions. Specifically, taking new action is

like walking in different directions in this three-dimensional

space or staying at the current position. In this way, we have

reduced the number of action spaces from hundreds to seven,

making the implementation of Oppugno become possible.

4. EVALUATION

In this section, we evaluate the performance of Oppugno with

real-world datasets and a broad range of synthesized datasets.

4.1. Methodology

Network Traces: We use two real-world datasets in our ex-

periments: (1) the FCC dataset [13] containing over 1 million

throughput and round-trip-time traces collected in natural en-

vironments; (2) the HSDPA dataset [14] on mobile through-

put covers multiple usage scenarios such as buses, trains, and

cities, which together with the FCC dataset is used to synthe-

size environments with various conditions to verify the gen-

eralization of Oppugno.

Baselines: We compare Oppugno to the following baseline

video streaming algorithms:

(1) Rule-based ABR: It is a lightweight ABR algorithm

that estimates the bandwidth using the weighted aver-

age of the last 5-second bandwidth, and then selects the

corresponding bitrate.

(2) RL-based ABR: We employ the RL-based ABR algo-

rithm proposed in Pensieve [4] but decrease the deci-

sion interval to 0.4 seconds to fit the realtime scenario.

(3) GCC: We implement the basic idea of GCC [15],

a well-known UDP congestion control algorithm in

our context. It estimates network congestion through

packet loss rate from sender and delay from receiver,

and reduces the sending rate when congestion happens.

Experiment Setup: Our experiment follows the QoE setting

in Eq. 1, where q(Rn, Ln, Dn) = crRn + clLn + cdDn. The

hyperparameters of cr, cl and cd are set as 1, -1, and -0.5
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Fig. 6: QoE under different network environments

respectively to balance the three components. The penalty

term coefficient α and β are set as 0.1 and 0.2. The learning

rate in our PPO algorithm is set as 3e−4.

4.2. Performance with Real-world Data

We first test the performance of Oppugno under real-world

network conditions. We utilize the FCC dataset as it contains

all the metrics we need including bandwidth, loss, delay, etc.

We demonstrat the overall QoE score achieved by Oppugno

compared with the baseline methods in Figure 5a and the de-

tailed CDF plot in Figure 5b. We have two key observations.

First, Oppugno is able to outperform all the baseline

methods with higher QoE, with 5.1% higher QoE than GCC

and 92.6% higher QoE than RL-based ABR under the real-

world dataset. This result confirms the effectiveness of our

joint design to integrate the loss adaptation and bitrate adap-

tion together for QoE optimization. An interesting result is

that both rule-based ABR and RL-based ABR are inefficient

to deal with this condition, achieving much worse perfor-

mance even than GCC. This is largely because of the impact

of re-transmission, and further indicates that the loss problem

is quite significant in realtime streaming so that traditional

ABR algorithms without considering loss is not applicable.

Second, Oppugno can achieve more stable and concen-

trated QoE score than the baselines. Figure 5a and the curve

in Figure 5b show a smaller variance of Oppugno than GCC.

This indicates that GCC is quite sensitive to packet loss and

insufficient to handle conditions with large loss ratio. Instead,

the QoE score of Oppugno is mainly concentrated within the

range of 0.5 to 1.0, reflecting that Oppugnu can well mitigate

the loss impact, even under a poor network condition with

large loss. As to the ABR algorithms, they achieve quite con-

centrated but overall poor QoE performance, which infers that

they fail to provide high QoE in a lossy environment.

4.3. Performance of Generalization

Oppugno performs well on the public dataset in the exper-

iments above, while the practical environment can be more

complex with various network conditions. To evaluate the

Kai Shen
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ability of Oppugno to generalize to different network condi-

tions, we synthesize network traces with different loss rate

based on the FCC dataset and HSDPA dataset. Figure 6 shows

the average QoE of different methods over different loss rate

and Figure 7 polts the detailed CDF plots. The results re-

veal more characteristics of these methods. We can find that

at different loss rate ranging from 1% to 2%, Oppugno can

achieve better QoE than all the baseline methods, with 3.9%

QoE improvement than GCC and 11.6% QoE improvement

than RL-based ABR when loss rate is 2%. This result indi-

cates that Oppugno has good generalization ability to adapt to

environments with different loss. For the baseline methods,

GCC outperforms other ABR-based methods with different

loss rate. This observation demonstrates that loss adaption is

actually a more dominant problem in the realtime streaming

scenario. Solutions with only bitrate adaptation cannot deal

with bit errors and packet losses, rendering larger QoE drop.

5. CONCLUSION

We present Oppugno, a framework that combines loss adapta-

tion and bitrate adaptation with the PPO reinforcement learn-

ing algorithm to tackle the realtime video streaming scenar-

ios. Unlike traditional ABR algorithms, Oppugno takes the

trade-off between bandwidth and acceptance of packet errors

into consideration. With these improvements, Oppugno out-

performed the existing ABR algorithm by 3.9% ∼ 11.6%
over the simulation of two famous datasets.
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